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Abstract

I propose a flexible Radial Basis Functions (RBFs) Artificial Neural Networks method

for studying the time series properties of macroeconomic variables. To assess the valid-

ity of the RBF approach, I conduct a Monte Carlo experiment using the data generated

from a nonlinear New Keynesian (NK) model. I find that the RBF estimator can un-

cover the structure of the NK model from the simulated data of 300 observations.

Finally, I apply the RBF estimator to the quarterly US data and show that the posi-

tive supply shocks have significantly weaker expansionary effects during the periods of

passive monetary policy regimes.
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1 Introduction

In this paper, I use the Radial Basis Function (RBF), which is a class of Artificial Neural

Network (ANN), as a nonlinear Vector Autoregression (VAR) estimator and examine its

applicability to macroeconomic time series analysis. The RBF has been studied extensively

in fields of computer science and neural networks, and it has been shown that the RBF

can approximate any continuous functions on a compact domain (known as the universal

approximation property).1 The use of RBF in the macroeconomic time series analysis is

motivated by its ability to flexibly estimate a nonlinear data-generating process without

prior modeling of the type of nonlinearity. Despite its flexibility, however, the RBF can

be efficiently estimated by following a simple two-step procedure commonly adopted in the

neural network community that essentially breaks down a costly nonlinear estimation into

a fast clustering method and a linear estimation.2 The benefit of low computational costs

allows researchers to estimate nonlinear VAR models having a typical amount of linear VAR

dimensions. In this paper, I introduce the RBF application to macroeconometrics and show

that the RBF time series model estimated via two-step estimation can be a valid alternative

to other nonlinear estimators for macroeconomic time series analysis.

To validate the use of the RBF estimator for macroeconomic analysis, we must first

test to see if the estimator can correctly capture the structure of the aggregate economy

with a number of observations that is usually available to a macro-econometrician. This

is because, even though the RBF estimator has the universal approximation property, its

rate of convergence generally depends on the smoothness of the function to be approximated

and the number of available observations. To this end, I conduct a Monte Carlo experiment

using simulated time series data generated from a medium-scale nonlinear New Keynesian

(NK) model, which economists and policy makers frequently view as a representation of the

aggregate economy. Nonlinearity in this NK model comes from a kink in the central bank’s

monetary policy rule, wherein the interest rate is bounded from below at 0%. I then calculate

the within-sample Mean-Squared-Errors (MSEs), which are defined by the distance between

the true impulse responses from the NK model and the impulse responses estimated by the

RBF estimator. For comparison, I also compute the MSEs using linear- and threshold-VAR

(TAR) estimators. I find that the RBF estimator produces smaller MSEs than linear VARs

and TARs, especially in middle and long horizons, even when the sample size is limited to

1See Hartman, Keeler, and Kowalski (1990) and Park and Sandberg (1991).
2This procedure is called ‘unsupervised learning’ in the neural nets field.
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300 periods. The result suggests that the use of the RBF estimator for macroeconomic time

series analysis may be appropriate.

I finally use the RBF estimator to understand the dynamic relationship between seven

US macroeconomic variables from 1978 to 2016. Using the utilization-adjusted total factor

productivity (TFP) of Fernald (2014) as a series of exogenous shocks, I estimate the impulse

responses of output, consumption, investment, hours worked, expected inflation rate, and

nominal interest rate. Through this exercise, I test the prediction of the textbook NK model,

which states that the expansionary effects of a positive supply shock are weaker under passive

monetary policy regimes, such as the zero-lower-bound (zlb) periods. Consistent with the

NK model’s prediction, I find that the effects of the positive TFP shock are considerably

weaker during periods of zlb.

Furthermore, the output responses to the supply shocks are found to be similarly small

between 2003 and 2004. During these periods, the federal funds rate was very low at around

1%. In fact, the estimated nominal interest rate response suggests that the Fed was not

actively responding to supply shocks during these periods. Owning to the unresponsive

nominal interest rate and the supply shocks’ deflationary effects, I find that the real interest

rate rises after the positive supply shocks during these periods, which discourages consump-

tion, investment, and output. The finding highlights the critical role that the response of

the real interest rate plays in shaping the responses of other macroeconomic variables. The

study also suggests that the estimated responses of macroeconomic variables of 2003—2004

are remarkably similar to those during the zlb periods of 2008—2015.

My results contrast with those of Gaŕın, Lester, and Sims (2019) and Wieland (2019),

who found the strong expansionary effects of positive supply shocks during the periods of

zlb. I briefly discuss potential explanations for the differences in the findings, and I show

that these differences are a consequence of different data specifications rather than different

methodologies. Specifically, I estimate the output response using the state-dependent local

projection (LP) method and show that the effects of the supply shocks are considerably

weaker during the zlb periods when the growth rate specifications are used and an outlier

(2008Q4) is excluded. This exercise reiterates the point that macroeconomic dynamics during

passive monetary policy regimes differ markedly from the macroeconomic dynamics typical

of active monetary policy regimes, as prescribed by the basic NK model.

The rest of the paper is organized as follows: Section 2 reviews the literature on the RBF.

Section 3 goes over the literature about time series analysis. Section 4 describes the Monte
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Carlo simulation exercise. Section 5 illustrates an empirical application using the US data.

Section 6 discusses the results, and Section 7 concludes.

2 Radial Basis Functions

In this paper, I focus on a particular class of ANN (i.e., the RBF). ANNs typically comprise

several layers between input (independent) and output (dependent) variables. Each layer

is made of multiple units, and a unit in one layer receives inputs from the previous layers,

producing outputs for the succeeding layer. The RBF is characterized by having three layers

with a single hidden layer in the middle and by having transformation functions in the hidden

layer that form radial symmetry around the units.3 Figure 1 shows a graphical description

of the RBF. The three layers depicted in the figure are: (1) an input layer, where the inde-

pendent variables enter the system; (2) a hidden layer, where the independent variables are

transformed; and (3) a linear output layer, where the dependent variables are predicted. The

RBF was first introduced as a solution technique for interpolation problems. During the late

1980s, the RBF formulation was extended to perform more general tasks of approximation.4

Since then, a number of researchers, including Park and Sandberg (1991), Xu, Krzyżak, and

Yuille (1994), and Girosi and Poggio (1990), have shown that any continuous function on a

compact domain can be approximated arbitrarily well by the RBF.

2.1 RBF Formulation

Consider a univariate nonlinear autoregressive process, yt, defined by yt = h(yt−1) + εt

(t = 1, . . . , N), where εt follows an independent and identical distribution (iid) with mean

zero and constant variance. We assume that yt is stationary and that h(·) is a nonlinear

function. By definition, h(yt−1) is the conditional expectation of yt, given yt−1. The RBF

estimator for h(yt−1) takes the following form:

ĥ(yt−1) = β0 +
M∑
j=1

D

(
||yt−1 − ξj||

λ

)
βj, (1)

3The word “hidden” is used to distinguish the layer in the middle from the input and output layers.
4See Broomhead and Lowe (1988), Moody and Darken (1989), and Poggio and Girosi (1990).
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Figure 1: Graphical description of RBF

where ξj represents a unit (or a centroid) in the hidden layer for j = {1, . . . ,M}, M denotes

the number of centroids, λ is a scale parameter, and β0, β1, ..., and βM are scalar parameters.

I choose the Gaussian density function for the kernel, D(x) = exp(−x/2), because it is a

popular choice of base function for the RBF. Roughly speaking, when a new input enters

the system, the RBF computes the Euclidean distance between the input and each of the

centroids, ξ’s. When, for instance, the distance between the input and j-th centroid, ξj, is

smaller, the kernel (Gaussian density function) centering on that centroid assigns a larger

weight, which activates βj more strongly. The RBF computes the predicted value, ŷt, based

on the weighted combinations of all the β’s.

I now extend Equation 1 to a general case that permits multiple variables and lags. Let

yt be a K × 1 vector of stationary nonlinear time series given by:

yt = H(xt−1) + εt,

where xt−1 = (y′t−1, . . . ,y
′
t−p)

′ is a KP × 1 vector, and εt is an iid with mean 0 and finite

covariance matrix. We may use an RBF estimator of order P (referred to as a RBF(P )

model) defined by:

Ĥ(xt−1) = β0 +
M∑
j=1

G(xt−1|ξj,λ)βj, (2)
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where βj and ξj (j = 1, . . . ,M), β0, and λ are K × 1 vectors. The kernel density function

is given by:

G(xt−1|ξj,λ) = exp

{
−1

2

(
xt−1 − (1(P×1) ⊗ ξj)

)′
(IP ⊗ Λ−1)

(
xt−1 − (1(P×1) ⊗ ξj)

)}
, (3)

with a diagonal matrix having Λ = diag(λ). Here, G(xt−1|ξj,λ) measures the distances

between each observation in xt−1 and the j-th centroid. Note that β0 represents a K × 1

vector of constant coefficients and βj denotes a K × 1 vector of slope coefficients associated

with the j-th centroid.

To estimate the three sets of parameters, ξ’s, λ, and β’s, I must solve the following

minimization problem:

min
{ξj ,βj}Mj=1,β0,λ

N∑
t=1

(
yt − Ĥ(xt−1)

)′ (
yt − Ĥ(xt−1)

)
(4)

At first glance the problem appears complex and highly nonlinear. However, in Section 2.2, I

show that this minimization problem can be solved quickly as if it were a linear optimization

problem.

2.2 Parameter Estimation Methods and Renormalization

As specified in Section 2.1, there are three types of parameters that must be estimated:

centroids ξ’s, scale parameters λ, and β’s. The rate of convergence and the accuracy of the

solution generally depend on the method of estimation. Because this paper does not aim to

find the optimal method of estimation, I simply choose one of the popular estimation methods

that break down the complex nonlinear minimization problem into two simple steps.5

In the two-step estimation, the parameters in the hidden layer (ξ’s and λ) and the β’s are

estimated separately. Note that, ideally, the global solution method6 would be preferable.

However, in reality, such methods exponentially increase the computational costs. Instead,

I employ a two-step estimation that greatly reduces the computational costs and show that

5This method of training is also called “unsupervised training,”
6In the neural networks literature this method is called “supervised training,” wherein the back-

propagation is activated.
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Figure 2: Illustration of K-means clustering

(a) Observations and “Means” (b) Clusters

even with the simple two-step procedure, the RBF estimator performs competently compared

to other traditional macroeconomic time series models. The two-step procedure is as follows.

First, I employ a clustering method to fix the value of centroids, ξj, and choose λ. Second,

I estimate β’s in an ordinary least-square (OLS) manner.7

Regarding the first step, a common choice to fix centroids is employing the K-means

clustering method. With this method, n observations are assigned into k clusters, with

each observation belonging to the cluster that has the nearest mean. The mean of each

cluster constitutes a prototype of that cluster, and for this reason, I use the means of the

K-means clustering method as the centroids in the RBF estimation. Figure 2 illustrates

the K-means clustering method. In this illustration, 1,000 observations are partitioned into

four clusters with yellow stars representing the means of each cluster. Essentially, the RBF

estimator constructs kernels (Gaussian density functions) around these centriods. The K-

means clustering method offers a fast algorithm for picking centroids that are balanced

representations of the entire sample.

Generally, centroids determined by K-means clustering are not unique, and the location of

the centroids depends on the initial values. Therefore, I conduct a primitive, random search

7The drawback of these approaches is that the choice of location parameters do not reflect the conditional
distribution, Pr(Y|X).
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optimization by simply repeating the K-means clustering algorithm using 1,000 different

initial values and by selecting a set of centroids that minimizes Equation 4. Other centroid-

selection methods, including the orthogonal least square algorithm by Chen, Cowan, and

Grant (1991) are considered. However, the crude optimization of the random search over

different initial values repeatedly produce lower errors and is more stable.

In addition to the centroids, the scale parameters, λ, must be estimated. I fix λ to be the

variance of corresponding variable in yt so that the kernel of the RBF in Equation 1 is akin

to the standard normal density function. Fixing λ is convenient for computational efficiency.

However, it has a side-effect of leaving hole-regions in the input space where no kernel has

appreciable support. For example, the top panel of Figure 3 depicts the hole-regions and the

support from the RBF kernels. Because λ is fixed, the kernel’s width is also fixed, leaving

a region where no kernel support can be reached. To avoid this problem, Friedman, Hastie,

and Tibshirani (2008) suggested the use of the renormalized RBF, defined as:

H̃(xt−1) =
M∑
j=1

G̃jβ
r
j (5)

where8

G̃j = G(xt−1|ξj,λ)

/
M∑
m=1

G(xt−1|ξm,λ). (6)

The bottom panel of Figure 3 illustrates the kernel support using the renormalized RBF,

which is now extended to cover the entire region. I use the renormalized RBF for the

remainder of the paper.

A convenient property of RBF implies that, after ξ’s and λ are fixed, the function is

linear in βr’s as shown in Equation 5. Thus, for the second step in the two-step estimation

procedure, βr’s are estimated in the usual OLS manner.

Finally, following Blake and Kapetanios (2003), I use the Bayesian information criteria

(BIC) to choose the number of centroids, M .9

8The renormalized RBF does not have an intercept for including it causes perfect collinearity.
9I also compute the Akaike information criteria, but BIC gives a clearer indication of the optimal number

of centroids.
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Figure 3: Top panel: RBF. Bottom panel: Nomalized RBF

(reprinted from Friedman, Hastie, and Tibshirani (2008)).

3 Literature Review

This paper is related to extensive literature on nonlinear time series models used for macroe-

conomic analysis. In this section, I highlight two principal approaches to parametric non-

linear estimation, review the literature on nonparametric estimation, discuss literature that

directly estimates the impulse response functions, and list other papers that have applied

ANN and machine learning techniques for economic analysis.

The first approach of capturing nonlinearities using parametric models relied on the use

of regime-switching VAR models, including the TARs (e.g., Hubrich and Teräsvirta (2013),

Balke and Fomby (1997), Teräsvirta, Tjøstheim, Granger, et al. (2010), Rothman, Van Dijk,

and Hans (2001), Camacho (2004), and Galvao and Marcellino (2014)) and Markov-switching

VARs (e.g., Krolzig (2013), Hamilton (1989), Sims, Waggoner, and Zha (2008), and Sims

and Zha (2006)). These models are well-suited to describe correlated data that show clear

dynamic patterns during different time periods characterized by different regimes. Addition-

ally, recent approaches, such as the multiple change-point model of Koop and Potter (2007),

have added more flexibility to these types of models by introducing an estimation method

for regime-switching models where the number of regimes can be estimated.

The second and more related approach consists of the TVC-VAR models (Canova (1993),

9



Canova and Gambetti (2009), Cogley and Sargent (2001), Cogley and Sargent (2005), Prim-

iceri (2005), Koop, Korobilis, et al. (2010), Koop, Leon-Gonzalez, and Strachan (2009)),

which can capture general nonlinear dynamics by allowing for flexible variation in VAR co-

efficients. In a similar pursuit, this paper contributes to the literature by introducing the

application of the RBF to the macroeconometrics that can handle the flexible estimation of

nonlinear models.

Compared to the TVC-VAR literature, the RBF estimator has two limitations. First, the

RBF estimator in this paper can only be applied to small- and moderate-dimensional models.

The number of dimensions that can be handled using the RBF estimator is same as what

is typically allowed for linear VARs estimation at this stage. This is in contrast to recent

TVC-VAR literature (Koop and Korobilis (2013), Petrova (2019), and Chan, Eisenstat, and

Strachan (2020)) that has introduced estimations and specifications that permit the use of

large-dimensional TVC-VAR models (as large as 25 variables). Another limitation is that

the RBF estimator does not admit the time-varying volatility at this stage, in contrast to the

TVC-VARs introduced by Cogley and Sargent (2005) and Primiceri (2005) that permitted

the time-varying volatility. This implies that, in case the assumption of constant volatility

is violated, the RBF estimator is mis-specified. Despite these limitations, the current paper

shows that the RBF estimator is promising in terms of macroeconomic time series analysis

and serves as a starting point for incorporating the RBF techniques in macroeconometics.

The listed literature focused on parametric nonlinear estimation. However, there has

also been extensive work on nonparametric estimation.10 Local smoothing method was

proposed by Robinson (1983), Härdle and Tsybakov (1997) and Härdle, Tsybakov, and Yang

(1998). Additionally, an additive nonparametric VAR model was suggested by Jeliazkov

(2013). The semi-nonparametric approach suggested by Gallant and Tauchen (1989) used

Hermite expansions to approximate the one-step-ahead conditional density of time series

data. A common challenge faced by those works is the curse of dimensionality, which limits

their applicability. The RBF estimator can be useful in this context because of the low

computation cost required for estimation when two-step estimation is used.

In addition to approaches that capture nonlinearity in time series data using the full-

fledged VAR model mentioned above, there has been a growing interest in directly estimating

the impulse response functions. This approach was pioneered by Jordà (2005), who proposed

the LP method. This method can easily capture nonlinearities in the response functions,

10A comprehensive references can be found in Härdle, Lütkepohl, and Chen (1997)
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but, as pointed out by Barnichon and Matthes (2018), the method posed serious difficulties

of efficiency. Indeed, drawing inferences on a rich set of nonlinearities, including sign- and

state-dependence, using the LP method is often difficult.

Recently, an improvement to this approach was suggested by Barnichon and Matthes

(2018), who used few numbers of Gaussian functions to approximate the impulse functions.

Like Jordà (2005), this approach was robust to a functional-form assumption error, but it

had the advantage of reducing efficiency costs, because, rather than using the model-free

estimation, they imposed a flexible parametric assumption based on a mixture of Gaussian

base functions. Like Barnichon and Matthes (2018), this paper utilizes the Gaussian func-

tions to approximate macroeconomic dynamics. However, the current paper differs from

Barnichon and Matthes (2018) in two respects. First, this paper uses a mixture of Gaussian

base functions to capture nonlinear time series as a full-fledged VAR model. Their approach

directly estimated the impulse response functions. Second, this paper employs a neural net-

work structure, making use of the hidden layer. The multiple-layer structure of the RBF

provides extra flexibility, making it possible for its estimator to generically work in many

different applications without prior modeling of nonlinearity types or without specifying how

states switch.

In addition to the nonlinear time series literature listed above, the current paper is ob-

viously related to the literature that employed ANN for economic and financial time series

analysis. Most the research that applied ANNs to economics focused on forecasting financial

variables. In these studies, the ANN models were often found to outperform traditional time

series models.11 Fewer studies have tested ANN’s ability to forecast macroeconomic vari-

ables. Swanson and White (1997) applied ANN models to forecast nine US macroeconomic

series and concluded that although their results were mixed, the ANN models were promising

even when no explicit nonlinearity was found in the macroeconomic dynamics. Moshiri and

Cameron (1999) investigated whether an ANN could correctly forecast inflation, and Tkacz

(2001) used it to forecast the Canadian GDP. An extensive review of the use of ANN in the

context of economic analysis was presented by Kuan and White (1994). Recent applications

of machine learning in economic forecasting were described by Guerrón-Quintana and Zhong

(2017). Fernández-Villaverde, Hurtado, and Nuno (2018) used the machine learning tech-

nique to solve a nonlinear dynamic macroeconomic model. Blake and Kapetanios (2000),

Blake and Kapetanios (2003), Blake and Kapetanios (2007a), and Blake and Kapetanios

11See Hutchinson, Lo, and Poggio (1994), Lachtermacher and Fuller (1995), Zhang and Wan (2007), Zhang
and Hu (1998), and Guresen, Kayakutlu, and Daim (2011).
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(2007b) used the RBF for a variety of specification testing problems. In contrast to these

papers, the current paper uses the ANN technique to model macroeconomic time series data

as a full-fledged VAR model and investigates the dynamic relationships between macroeco-

nomic variables using impulse response functions.

4 Monte Carlo Simulation

To study the validity of the RBF estimator for macroeconomic time series analysis, I report

on a Monte Carlo simulation in this section. I ask, “If the true data-generating process of

an economy is a medium-sized nonlinear NK model, can RBF networks uncover its structure

from a simulated dataset?” To answer this question, I must first solve a nonlinear NK model

globally, and I then simulate data using this NK model. The nonlinearity of this NK model

stems from the kink in the central bank’s Taylor rule, in which the bank cannot lower the

interest rate below zero. In Appendix 8.1, I describe in detail the NK model that is used

for simulation. After I solve the model, I simulate the time series data for 1 million periods.

The nominal interest rate hits zero for about 1.85% of the simulated periods.

Using the time series data generated by the NK model, I calculate the within-sample

MSEs of the impulse responses estimated by the RBF estimator, the linear VARs, and the

two-regime TARs. Then, I compare the performance of the RBF estimator against the

other two estimators. The MSEs are measured using the deviation of the estimated impulse

responses from the true impulse responses produced by the NK model. I present the MSEs

under two different scenarios. In the first scenario, the economy is in a normal state, in

which the nominal interest rates are strictly positive. To confirm that the economy is far

from the zlb state, I ensure that the nominal interest rate is greater than 1% during at least

five consecutive periods before and after the shock hits the economy. The second scenario

considers the economy under the zlb state, in which the nominal interest rate is bound at

zero when the shock hits the economy.

The exogenous state variable for the NK economy is the productivity shock, at, and the

endogenous state variables are price dispersion, consumption, and interest rate. Because

econometricians typically do not have a good measure of price dispersion, I assume that I

observe the inflation rate rather than the price dispersion. Because at is orthogonal to the

other variables, I impose the assumption that the productivity shock can affect the other

variables contemporaneously but not vice versa. Next, I describe the three estimators used
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for the MSE comparison.

4.1 Model Description

4.1.1 RBF estimator

Let πt+1 be inflation, Ct be consumption, Rt be interest rates, and Xt = [πt+1, Ct, Rt]. Our

RBF estimator can be written as follows:

Xt = H̃
(
at, {at−p,Xt−p}Pp=1

)
+ Ω

1/2
R eXt (7)

where eXt denotes the structural shocks to Xt.

4.1.2 Linear VAR

Let Yt = [at, πt+1, Ct, Rt]. I impose the same assumption as the one made for RBF esti-

mator above in which the productivity shock is exogenous and affects other variables con-

temporaneously but not vice versa by ordering at at the very first. The linear VAR is as

follows:

Yt = A0 +
P∑
p=1

ApYt−p + Ω
1/2
V eYt (8)

with A0 and Ap for p = {1, . . . , P} representing matrices of VAR coefficients and eYt denoting

the structural shocks to Yt.

4.1.3 TAR

Lastly, I estimate the two-regime TAR model defined as

Yt =

[
c1 +

P∑
p=1

Γ1,pYt−p + Ω
1/2
1 eYt

]
St +

[
c0 +

P∑
p=1

Γ0,pYt−p + Ω
1/2
0 eYt

]
(1− St) (9)

where

St = {0, 1} and St = 1 if Rt−d > R∗ (10)

The TAR model considers the possibility of two regimes, in which a regime switches when

the d-th lag of the interest rate, Rt−d, exceeds a threshold value, R∗. I assume that both
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d and R∗ are unknown parameters that need to be estimated. The model is designed to

capture the structure of the NK economy in the normal state (S = 1) and in the zlb state

(S = 0). Note that c1, c0,Γ1,p, and Γ0,p are the matrices of coefficients for each state. I follow

Alessandri and Mumtaz (2017) for the estimation of Equation 9 and 10. The procedure is

described in Appendix 8.6.

4.2 Generalized Impulse Response

One complication arises when I estimate nonlinear impulse response functions, which gener-

ally depend on future shocks, the current state of the economy (history), and the sign and

magnitude of the current shock. To accommodate the impulse responses to various future

shocks, I use the generalized impulse response functions in the spirit of Koop, Pesaran, and

Potter (1996).12 Let GI denote a generalized impulse response function. Then the impulse

response of a variable, Yt+h, during h-period ahead is:

GI(h, vt, ωt−1) = E[Yt+h|vt, ωt−1]− E[Yt+h|ωt−1] for h = 0, 1, . . . (11)

where vt is the structural shock to at, and ωt−1 is the history (ωt−1 = {at−p,Xt−p}Pp=1 for the

RBF, and ωt−1 = {Yt−p}Pp=1 for the other two estimators). The examples of the generalized

impulse responses using the RBF estimator, with the confidence bands computed by residual-

based block bootstrap method, are illustrated in Appendix 8.7.

4.3 Results: MSE Comparison

To assess the overall performance and accuracy of the RBF estimator, I present below the

within-sample MSEs. For comparison, I also present the MSEs produced by the linear VAR

with four lags (VAR(4)) and the TAR with two lags (TAR(2)). I employ one lag for the RBF

estimator (RBF(1)). The MSEs are computed on the basis of 1,000 Monte Carlo simulations.

In each simulation, I carry out the following procedures: randomly pick a new sample of 300

observations, estimate the RBF, linear VAR, and TAR models, select a history within that

12Earlier work includes Beaudry and Koop (1993), Potter (1995), Pesaran and Shin (1996), and Potter
(2000). In the generalized impulse response framework, the problem of future shock-dependence is handled
by averaging out the impulse responses with many different future shocks. I use the Monte Carlo integration
to compute the conditional expectation, and I calculate the expectation by averaging out 1,000 different
paths of simulated future shocks. See Koop, Pesaran, and Potter (1996) for more details.
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sample, give a shock, estimate generalized impulse response functions, and compute the

MSEs. In Table 1, I present the h-period ahead MSEs of inflation rate, consumption, and

interest rates for the normal state.

Table 1: MSE Performance in normal state (estimation periods = 300)

Inflation Consumption Interest rates
VAR(4) TAR(2) RBF(1) VAR(4) TAR(2) RBF(1) VAR(4) TAR(2) RBF(1)

h = 1 0.0394 0.1957 0.1750 0.0191 0.0699 0.1421 0.0206 0.0983 0.0425
h = 3 0.0411 0.1590 0.0593 0.0851 0.4366 0.1240 0.0256 0.0943 0.0256
h = 5 0.0407 0.0845 0.0271 0.1127 0.6251 0.1185 0.0256 0.0854 0.0205
h = 10 0.0214 0.0286 0.0059 0.1353 0.3055 0.0872 0.0260 0.0302 0.0159
h = 15 0.0094 0.0095 0.0018 0.1208 0.1138 0.0492 0.0214 0.0190 0.0086
h = 20 0.0039 0.0082 0.0006 0.0738 0.0494 0.0249 0.0118 0.0149 0.0043
h = 30 0.0015 0.0036 0.0001 0.0242 0.0136 0.0058 0.0041 0.0090 0.0010

Notes: Summary statistics over 1,000 Monte Carlo replications. MSE is the mean-squared error of the
estimated impulse response function. A smaller MSE means that an estimator-produced impulse response
is closer to the true structural impulse response. VAR(4), TAR(2), and RBF(1) indicate that the estimators
used to produce the MSEs shown in corresponding columns are VARs with four lags, TARs with two lags,
and RBF estimators with one lag.

As Table 1 show, the performance of the RBF estimator compared to the VAR and TAR

are mixed. In the short horizon (1- and 3-period ahead MSEs), the RBF estimator produces

larger errors compared with the linear VAR. However, in the middle-to-longer horizons (5-

period ahead and longer), the RBF estimator produces the smallest MSEs compared to the

other estimators. The result that the RBF estimator outperforms the linear VAR in the

middle and longer horizons is striking given that the NK model can be well-approximated

by linear functions in the normal state.

Table 2 shows the MSEs of inflation, consumption, and interest rates under the zlb state.

For the zlb case, the errors from the RBF estimator when it predicts inflation and interest

rates are lowest compared with the other estimators for all horizons. The RBF estimator

for the 1-period ahead prediction of consumption produces larger errors compared to the

linear VAR model. However, from the third period on, the errors from the RBF estimator

is consistently lower than the other two estimators even for the consumption. The fact that

the RBF estimator clearly outperforms the VAR and TAR models in the case of zlb suggests

that the RBF estimator is useful for capturing nonlinear- and history-dependent dynamic

responses of the macroeconomic variables that might not be captured in the VAR and TAR
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Table 2: MSE Performance in zlb state (estimation periods = 300)

Inflation Consumption Interest rates
VAR(4) TAR(2) RBF(1) VAR(4) TAR(2) RBF(1) VAR(4) TAR(2) RBF(1)

h = 1 0.4453 0.2894 0.2534 0.1272 0.1224 0.2679 0.1975 0.1202 0.1143
h = 3 0.1130 0.1502 0.0654 0.2294 0.3784 0.2008 0.0911 0.0827 0.0436
h = 5 0.0611 0.0837 0.0343 0.1466 0.5764 0.1299 0.0314 0.0768 0.0178
h = 10 0.0215 0.0261 0.0068 0.1352 0.3008 0.0813 0.0260 0.0286 0.0143
h = 15 0.0094 0.0088 0.0019 0.1209 0.1106 0.0483 0.0214 0.0164 0.0083
h = 20 0.0039 0.0074 0.0006 0.0738 0.0467 0.0247 0.0118 0.0128 0.0042
h = 30 0.0015 0.0032 0.0001 0.0242 0.0123 0.0058 0.0041 0.0078 0.0010

Notes: Summary statistics over 1,000 Monte Carlo replications. MSE is the mean-squared error of the estimated
impulse response function. A smaller MSE means that an estimator-produced impulse response is closer to the
true structural impulse response.

models.

Overall, the result in this section indicates that the RBF estimator can uncover the

structure of the nonlinear NK model even from a small sample of simulated data and that

the RBF estimator can be a useful alternative to the linear VAR and TAR models. The result

also suggests that the use of the RBF estimator for macroeconomic time series analysis may

be appropriate.

5 Application to the US Data

Finally, I apply the RBF estimator to the quarterly US data. Following Wieland (2019) and

Gaŕın, Lester, and Sims (2019), I ask if a positive supply shock is less expansionary when the

nominal interest rate is at the zlb. The question is motivated by the textbook NK model,

which predicts the possibility of a contractionary supply shock at the zlb. The mechanism

that underlies this prediction is described below.

I assume that a positive supply shock is an increase in neutral productivity. First, an

increase in productivity decreases the inflation rate and the equilibrium real interest rate.

When such a shock hits the economy, the central bank reacts by lowering nominal interest

rates following the Taylor rule in the normal state. However, if the economy is at the zlb,

the central bank is unable to push down the nominal interest rate further. Consequently,

the real interest rate will rise, and the demand will suffer. In the extreme case where the zlb
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is expected to last for a long period, the increase in the real interest rate can potentially be

so large that the negative demand response dominates the positive effect of the productivity

shock. When that happens, the GDP decreases.

To test the predictions of the NK model, Wieland (2019) examined the experiences of the

Great East Japan Earthquake and the oil-supply shocks and found that the effects of a supply

shock remained the same at the zlb, in contrast to the NK model’s prediction.13 Gaŕın,

Lester, and Sims (2019), using the utilization-adjusted TFP shock estimated by Fernald

(2014), found that a positive supply shock was even more expansionary at the zlb. Because

their findings potentially cast doubt on the assumptions that underlie the NK models, I also

employ the RBF estimator with the utilization-adjusted TFP shock estimated by Fernald

(2014) to investigate this important question. Unlike previous studies, I find some evidence

of weaker expansionary effects during passive monetary policy regimes.

5.1 Data

The dataset includes the following six variables: the log difference of real GDP, ∆ lnYt;

personal consumption, ∆ lnCt; private investment, ∆ ln It; the log of hours worked, lnNt;

the expected inflation rate from the University of Michigan’s Survey of Consumers, πet ; and

the effective federal funds rate, rt.
14 In addition to these variables, I use the utilization-

adjusted TFP process estimated by Fernald (2014).

Gaŕın, Lester, and Sims (2019) illustrated that the utilization-adjusted TFP series pro-

posed by Fernald (2014) could be considered an exogenous shock process. Gaŕın, Lester, and

Sims (2019) used four popular measures of exogenous macroeconomic shocks15 and showed

that these measures did not Granger cause the utilization-adjusted TFP shock. They con-

cluded, therefore, that the utilization-adjusted TFP process could be treated as an exogenous

shock process. Based on their evidence, I, too, treat the utilization-adjusted TFP process as

an exogenous shock process.

13Wieland (2019) also suggested that the expansionary effects of a supply shock may be even larger at the
zlb.

14Real GDP (GDPC09), personal consumption (PCEC), and private investment (FPI) are from the NIPA
table. Hours are obtained by multiplying civilian employment (CE16OV) and average weekly hours duration
(PRS85006023). The GDP, consuption, investment, and hours are expressed as per capita by dividing the
variables by the civilian noninstitutional population (CNP16OV).

15The four measures are Romer and Romer (2004)’s monetary policy shocks, Romer and Romer (2010)’s
tax shocks, Ramey (2011)’s defense news shock, and Kilian (2008)’s exogenous oil price shock.
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The dataset begins in 1978Q1, when the quarterly data of inflation expectation became

available, and it ends in 2016Q4. The US economy was in the zlb state from the last quarter

of 2008 to the last quarter of 2015.

5.2 Generalized Impulse Responses

I next estimate the generalized impulse responses to a positive TFP shock. The estimated

model is:

Xt = H̃
(

∆ lnAt, {∆ lnAt−p,Xt−p}Pp=1

)
+ ut (12)

with Xt = [∆ lnYt,∆ lnCt,∆ ln It, lnNt, π
e
t , rt] and ut representing a white-noise reduced

form error. I assume that the utilization-adjusted TFP shock can affect the other variables

within the same period, but not vice versa. I set the lags to four.

As in Section 4.1, I define the generalized impulse response of a variable, Xt+h, during

the h-period ahead to be

GI(h, vt, ωt−1) = E[Xt+h|vt, ωt−1]− E[Xt+h|ωt−1] for h = 0, 1, . . . (13)

with vt denoting the structural shock to ∆ lnAt, ωt−1 = {∆ lnAt−p,Xt−p}Pp=1 representing

the history, and t spanning from 1978Q1 to 2016Q4. I set the size of the shock, vt, to one

standard deviation of ∆ lnAt. Because ∆ lnAt exhibits a strong fluctuation and because the

estimated impulse responses depend on the current and past values of ∆ lnAt, the resulting

impulse responses also exhibit significant fluctuations. To avoid this issue, the impulse

responses shown below are averaged out over [t− 2, . . . , t+ 2] for all t whenever possible. To

estimate the impulse response functions, I impose the assumption that the shock to ∆ lnAt

affects the other variables contemporaneously but not vice versa.
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Figure 5: Responses at different horizons

(a) cumulative GDP (b) Expected Inflation

(c) Fed funds rate (d) real interest rate

Notes: Impulse response functions (in percent) to a one standard-deviation positive TFP shock after 1st,

3rd, and 10th quarters. Black shaded areas corresponds to NBER-recession dates. Red shaded areas

represent the periods of weak output responses outside the recession dates.
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Figure 6: Responses at different horizons

(e) cumulative Consumption (f) Hours worked

(g) cumulative Investment

Notes: Impulse response functions (in percent) to a one standard-deviation positive TFP shock after 1st,

3rd, and 10th quarters. Black shaded areas corresponds to NBER-recession dates. Red shaded areas

represent the periods of weak output responses outside the recession dates.
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5.3 Results

Figures 5-6 plot the point estimates of the responses after 1 quarter, 3 quarters, and 10

quarters between 1980 and 2016. In Figures 12-18 in Appendix 8.8, the impulse responses

are shown with confidence bands for the horizons of the (1) 1st quarter, (2) 2nd quarter, (3)

5th quarter, and (4) 9th quarter.16 In these figures, the point estimates are drawn in blue

solid lines and the 68 percent confidence bands are expressed as red dotted lines

Generally, the impulse responses from the RBF estimator look reasonably sensible. The

positive supply shocks have positive and persistent effects on output, consumption, and

investment. Expected inflation declines immediately after the shock, but the effect is short

lived. The Fed funds rate also decreases after the shock in most periods, which is consistent

with the Taylor rule. Hours worked goes down during the first few quarters during most

periods, but it rises over the longer horizon. Overall, these responses are consistent with

previous studies that investigated the effects of supply shocks on macroeconomic variables.

Nonetheless, the figures illustrate that there are substantial time variations in the responses

of the macroeconomic variables.

Figure 5(a) shows the response of the cumulative GDP.17 As summarized above, the

TFP shock is expansionary during all periods but exhibits a substantial time-variation in

terms of the magnitude of its effects. The supply shock’s post-10-quarters effects vary from

approximately 0 to 0.7%, depending on the timing of the shock. The figure also suggests

that the effect of the productivity shock is procyclical. The 2008 financial crisis had a

particularly powerful impact: it weakened the effects of the productivity shock, reducing its

after-10-quarters effects from 0.57% in 2007Q2 to 0.05% in 2009Q4.

Surprisingly, the expansionary effects of the productivity shocks were considerably weaker

during the zlb periods even after the recession that followed the 2008 financial crisis ended.

These weak expansionary effects are characterized by the weak on-impact effects and the lack

of persistence. Interestingly, similarly weak output responses are observed between 2003 and

2004, when the persistence of the effects was also absent. The decline of the output responses

probably cannot be attributed to the procyclical effects of the supply shocks because these

periods do not correspond to the recessionary periods. Rather, they correspond to the

recovery phase from the 2001 recession, when the fed funds rate was kept very low at around

16The confidence bands are computed using the block bootstrap method.
17The result shown here is not the GDP difference. It is the cumulative sum of the estimated impulse

responses.
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1%, and to the periods right before the rate started to rise successively in 2005 and 2006.18

Figure 5(c) plots the estimated response of the fed funds rate. Although the interest rate

is estimated to go down in most periods (consistent with the Taylor rule), it was estimated

to either go up or stay the same between 2003 and 2004 and after the 2008 financial crisis.19

Furthermore, Figure 5(d), which shows the response of the real interest rate calculated from

the simple Fisher equation20, indicates that the real interest rate would have been higher

in response to the supply shock around 2003—2004 and after 2008. The results suggest

that the response of the real interest rate plays a crucial role in the formation of the output

responses. The fact that the supply shocks are found to have weaker expansionary effects

not only during the zlb periods but also between 2003 and 2004 makes the prediction of the

NK model, in which the monetary policy impotency reduces the effects of supply shocks,

more convincing.

Figure 5(e) shows the response of cumulative consumption. Like output response, con-

sumption tends to increase throughout the sample in response to the positive productivity

shock. However, the response is particularly weak during 2003-2004 periods and after the

2008 financial crisis. Moreover, the cumulative investment response shown in Figure 5(g)

exhibits particularly weak responses during the 2003—2004 period and after 2008. To reiter-

ate, these findings are in accordance with the textbook NK model and the findings from the

output and interest rates responses noted above. The decline of in inflation expectation with

the unresponsive monetary policy raises the real interest rate and discourages consumption

and investment.

Finally, Figure 5(f) plots the response of hours worked. Previous literature found that

the hours worked decreased in the short run in response to a positive productivity shock,

which is often referred to as evidence for price-stickiness in the macro models. My finding

is consistent with the existing literature: the hours worked decrease in the short-run but

rise over the longer horizon. This pattern is stable for most of the sample periods, with the

exception of the recessionary periods during the early 1980s, the 2001—2005 periods, and

after 2008. These periods correspond to the periods of a large slack in the labor market and

to the periods of relatively small or positive real interest rate responses. Peculiarly, after

18see Figure 11.
19The responses during these periods are not statistically different from zero.
20The real interest rate = nominal interest rate - expected inflation. The negative real interest rate

response means that the fed funds rate decreased for more than one-for-one in response to the decline in the
expected inflation.
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2008, the positive productivity shocks are estimated to increase the hours worked over both

short and long horizons.

In summary, the estimated impulse responses from the RBF estimator suggest that the

response of macroeconomic variables to a positive supply shock is substantially time vari-

ant. The responses also hint that the effects of the productivity shocks might have been

quantitatively and qualitatively different after the recent financial crisis and the 2003—2004

periods, when the monetary policy was perhaps less sensitive to the deflationary pressure

caused by the supply shocks. In particular, the effects of the supply shocks during the pe-

riods of monetary policy inaction are found to be considerably less expansionary, which is

consistent with the textbook NK model but is inconsistent with what Wieland (2019) and

Gaŕın, Lester, and Sims (2019) reported. The findings indicate that the economic responses

to the supply shocks around 2003-2004 were markedly similar to the responses during the zlb

periods. Moreover, the findings highlight the critical role that the response of the real inter-

est rate plays in determining the responses of other macroeconomic variables. Importantly,

all of the findings described above are based on the RBF estimator, which was estimated

without imposing a priori functional form assumption.

6 Discussion

Why do the estimates in Section 5 differ starkly from those found in the existing literature,

which concludes that the supply shocks are even more expansionary under the zlb? Is the

difference an artifact of the nontraditional methodology employed in this paper? To answer

these questions, I briefly investigate the relationship between the TFP shocks and the output

using the state-dependent LP method of Jordà (2005).

Using the same data that I used in Section 5, I estimated the following regression:

h∑
j=0

∆ ln(Yt+j) =(1− Zt) (αnh + βnh ∆ lnAt + φnh(L)xt−1) (14)

+ Zt (αzh + βzh ∆ lnAt + φzh(L)xt−1) + ut+h

where Zt is the indicator variable for the zlb periods, and xt is the control variables. Following

Gaŕın, Lester, and Sims (2019), I define the zlb as the periods between 2008Q4 and 2015Q4.
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The control variables are lagged ∆ ln Yt and ∆ lnAt. I set the number of lags to four. Because

I do not need to use the expected inflation, I now extend the dataset to periods between

1948Q1 and 2016Q4. Additionally, I exclud the 2008Q4 because it nontrivially affects the

estimated on-impact response of output during the zlb periods. The latter probably is caused

by the large impact of the Lehman failure output, which is not driven by movement in the

TFP.

Figure 7: Response of GDP using LP method

(a) Dependent variable:
∑h

j=0 ∆ lnYt+j (b) Dependent variable: lnYt+h − lnYt−1

Notes: Estimated impulse response of output to a one unit TFP shock at various horizons. The solid blue

line shows the response under the normal periods (i.e. when Zt = 0). The solid red line is the response

when the ZLB binds (Zt = 1). The shaded bands represent the 90 percent confidence interval.

The left panel of Figure 7 shows the estimated cumulative output responses during the

normal periods in the blue line and during the zlb periods in the red line. The shaded

bands represent the 90 percent confidence interval. The output response during the normal

periods is initially small, but it grows larger over time, culminating at around 0.2% in the

10th quarter. In contrast, the estimated response is weaker during the zlb periods and is not

statistically different from zero for all horizons. The result is consistent with my finding in

Section 5 that the weaker output response occurs when the monetary policy does not react

actively to the shocks. As a robustness check, I also regress Equation 14 with the dependent

variable specified as (ln Yt+h − ln Yt−1). The results shown in the right panel of Figure 7
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indicate that the main conclusion stays the same.

In contrast to previous literature, which concluded that the expansionary effects of the

supply shocks were even larger at the zlb, I find that the supply shocks become less ex-

pansionary during those periods. The difference is likely to be a product of different data

specifications rather than of different methodologies. In particular, Gaŕın, Lester, and Sims

(2019) used aggregate GDP and the log-level specification, whereas I use the GDP per capita

and the growth rate specification. Additionally, I also exclude the outlier (2008Q4). Once I

treat the data as described, the supply shocks are found to have weaker expansionary effects

during the passive monetary regimes even when I use the state-dependent LP method.

7 Conclusion

In this paper, I investigated the applicability of RBF to macroeconomic time series analysis.

The RBF estimator is a useful alternative to traditional estimators because of its low compu-

tational costs, which allow researchers to estimate nonlinear VAR models with a dimensional

size of what is typically allowed in linear VARs.

Based on a medium-scale nonlinear NK model, I performed a series of Monte Carlo

experiments to study the small sample properties of the proposed RBF estimator. I found

that the RBF estimator produced smaller MSEs than the linear VAR and TAR models,

especially in terms of the middle- and long-period horizon. The generalized impulse responses

from the RBF estimator suggested that the estimator can learn the structure of the nonlinear

NK model from the sample of simulated data, whose lengths were as small as 300 periods.

Finally, by applying the RBF estimator to quarterly US data, I found that the responses

of macroeconomic variables to a positive supply shock exhibited substantial time variations.

The result suggested that the expansionary effects of a supply shock became significantly

weaker during periods of monetary policy inaction, which is consistent with the prediction

of a textbook NK model.

This paper highlights the potential benefits and challenges of the RBF estimator in

analyses of macroeconomic time series data. The proposed RBF estimator provides a useful

starting point for incorporating RBF techniques in macroeconometrics.

25



8 Appendix

8.1 NK Model for Monte Carlo Simulation

The economy is inhabited by four types of agents: Households, Final good producers, Inter-

mediate goods producers, and Monetary authority. Except for the habit persistence in the

household sector, the following NK economy is standard.

8.1.1 Households with Habit Persistence

There is a continuum of households that consume a composite good, Ct, supply labor, Nt,

and purchase bond Γt. The representative household maximizes the expected lifetime utility

given by:

Et

[
∞∑
t=1

βt−1
{

(Ct − γCt−1)1−σ

1− σ
+

(1−Nt)
1−κ

1− κ

}]
(15)

where γ controls the degree of habit persistence, and β is the discount factor.

The household is subject to the following budget constraint during each period:

PtCt +
1

Rt

Γt = WtNt + Γt−1 + PtΠt (16)

where Pt,Wt, and Rt are the commodity good price, the nominal wage, and nominal interest

rates, respectively. In addition, Πt is the profit from the intermediate-good firms.

We can maximize the utility subject to the budget constraint to obtain the optimal

allocation of consumption across time:

λt = βEt[λt+1Rt/πt+1]

where πt+1 = Pt+1/Pt and λt = (Ct − γCt−1)−σ.

The first order condition concerning labor supply decision is

Wt = ((1−Nt)
−κ/λt)
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8.1.2 Final Good Producer

There are perfectly competitive final good producers who use intermediate goods, Yt(i), for

i ∈ [0, 1] as inputs and produce final good, Yt, at a price Pt to maximize the profit given by:

max
Yt(i)

PtYt −
∫ 1

0

Pt(i)Yt(i)di (17)

The technology of the final good producer is given by the following CES aggregator:

Yt =

(∫ 1

0

Yt(i)
(η−1)
η di

) η
(η−1)

(18)

where Yt(i) and Pt(i) are quantity and price of an intermediate good i, respectively.

8.1.3 Intermediate Goods Producers

There is a continuum of monopolistically competitive intermediate goods producers who use

labor, Nt(i), as an input and solve the following cost minimization problem:

min
Nt(i)

TC(Yt(i)) = WtNt(i) (19)

where TC is nominal total cost. The production technology of the intermediate goods

producers are the following:

Yt(i) = AtNt(i) (20)

where At is a productivity shock that follows the AR(1) process given by:

log(At) = ρa log(At−1) + εat , εat v N(0, σ2
a) (21)

The cost minimization problem of firm i implies

mct =
Wt

PtAt

where mct is the Lagrange multiplier and also the real marginal cost of production.

The intermediate goods producers are subject to Calvo-type price setting friction. In this

environment, only a 1− υ fraction of the firms set prices optimally each period: Pt(i) = P ∗t ,
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and the remaining fraction υ of the firms are not allowed to change the price, Pt(i) = Pt−1(i).

The profit maximization problem of a re-optimizing firm i, which takes into account the

probability of adjusting its price next period and onwards, is given by the following:

P ∗t

∞∑
j=0

βjυjEt {Λt+j [P ∗t Yt+j(i)− Pt+jmct+jYt+j(i)]} (22)

where Λt is the household’s marginal utility of wealth at period t. I assume that the interme-

diate good producers are owned by the household and that all the profits are transferred to

the households. The intermediate goods producers solve the optimization problem described

above subject to the demand curve for their own goods, which is given by the following:

Yt(i) = Yt

(
Pt(i)

Pt

)−η
(23)

8.1.4 Monetary Authority

Lastly, a monetary authority sets the nominal interest rate according to the Taylor rule as

follows:

Rt = max

 π̄
β

(
Rt−1

π̄/β

)φR ((πt
π̄

)φπ (Yt
Ȳ

)φy)1−φR

, 1

 (24)

where π̄ is the inflation target, πt is the inflation rate between t − 1 and t, and Ȳ is the

output target. This monetary authority is subject to the zero lower bound, meaning that the

monetary authority cannot set the nominal interest rate below zero (or equivalently, R ≥ 1).

8.1.5 Aggregate Conditions

The aggregate resource constraint is simply given by

Ct = Yt

In the Calvo pricing setting, firms that change prices in different periods will have different

prices. Therefore, the economy needs to track price dispersion. When firms have differ-

ent relative prices, there are distortions that create a wedge between the aggregate output

measured in terms of production factor inputs and aggregate demand measured in terms of

composite goods. Specifically,
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AtNt(i) = Yt(i) =

(
Pt(i)

Pt

)−η
Yt

which implies, in aggregate,

Nt =

∫ 1

0

Nt(i)di =
Yt
At

∫ 1

0

(
Pt(i)

Pt

)−η
di =

Ytvt
At

where price dispersion, vt, can be described as:

vt ≡
∫ 1

0

(
Pt(i)

Pt

)−η
di = υπηt vt−1 + (1− υ)

(
P ∗t
Pt

)−η

8.2 Equilibrium Conditions

I summarize below the first order conditions that characterize the equilibrium of our economy.

Let p∗t = P ∗t /Pt and at = log(At). Then:

λt =(Ct − γCt−1)−σ (25)

λt =βEt[λt+1Rt/(πt+1)] (26)

vtYt =atNt (27)

mct =((1−Nt)
−κ/λt)/at (28)

Ct =Yt (29)

Rt = max

 π̄
β

(
Rt−1

π̄/β

)φR ((πt
π̄

)φπ (Yt
Ȳ

)φy)1−φR

, 1

 (30)

p∗t =((1− υπη−1)/(1− υ))1/(1−η) (31)

vt =υπηt vt−1 + (1− υ)p∗t
−η (32)

St =λtmctYt + βυEt[π
η
t+1St+1] (33)

Ft =λtYt + βυEt[π
η−1
t+1 Ft+1] (34)

p∗t =St/Ft (35)
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8.3 Numerical Solution of Nonlinear NK Model

The zero lower bound in the Taylor rule introduces the nonlinearity in the NK model.

Thus, the solution to the equilibrium condition must be obtained using a global solution

method. I use the projection method. Let S = [vt, Ct−1, Rt−1, at] be the state variables

of the model. There are three future variables, [πt+1(S), Yt+1(S), Ft+1(S)], that need to be

interpolated. I approximate each of the future variables with the Radial Basis Functions,

[πt+1(S̃), Yt+1(S̃), Ft+1(S̃)], in such a way that equilibrium conditions of the model are sat-

isfied at a set of collocation points, S̃. These collocation points, S̃, are selected using the

Maliar and Maliar (2015)’s Epsilon-Distinguishable Set algorithm. The solution’s accuracy

is presented in the Appendix 8.5. The model is calibrated to a set of standard parameter

values in the NK literature. The calibrated parameter values are listed in Appendix 8.4.

The algorithm for the model’s numerical solution is given below. There are two loops in

the algorithm. The outer loop iterates over the grid, and the inner loop iterates over policy

functions.

Step 0a: Solve the log-linear version of the model and simulate data. This initial step is required

for the clustering methods in Step 1.

Step 0b: Define the grid and the polynomials of the RBF. Given the simulated data, con-

struct a grid following Maliar and Maliar (2015) and estimate the RBF coefficients for

the policy functions.

Step 1: Compute integrals. Compute the integrals according to Maliar and Maliar (2015)

Step 2: Equilibrium conditions. For each grid points, use the polynomials obtained in Step

1 to compute the values of future variables, [πt+1(S̃), Yt+1(S̃), Ft+1(S̃)]. Given the

future variables, solve for the endogenous state variables next period using the model’s

equilibrium conditions.

Step 3: Evaluate conditional expectations. Using the integrals computed in Step 1, evalu-

ate the conditional expectations in equations 27, 33, 34.

Step 4: Evaluate new policy functions. Given the conditional expectations, obtain new val-

ues of future variables in the current period, [π′t(S̃), Y ′t (S̃), F ′t(S̃)], using equations 27,

33, 34. Given these new values, compute the new policy functions, and compute the
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difference between the polynomials of newly obtained policy functions and those of old

policy functions. Denote the percentage difference as r.

Step 5: Iteration. If r < 10−8, go to Step 6. Otherwise, update the guess and repeat Step 1-5.

Step 6: Compute new grid. Using the solution obtained in the previous steps, simulate new

data. Using these simulated data, choose a new grid using Maliar and Maliar (2015).

Compute the difference between the old grid and the new grid. Specifically, for each

newly computed grid point, find the nearest point in the old grid and compute the

Euclidean distance. This forms a vector, D, that contains the distances between each

new grid point to its nearest point in the old grid. Find the maximum of D and call

it rg.

Step 7: Iteration for grid. If rg is smaller than the Euclidean distance between the farthest

two points in the old grid, stop the algorithm. Otherwise, go back to Step 2 with the

new grid obtained in Step 6.

8.4 Calibration

The parameter values for calibration of the New Keynesian model are summarized in Table

3.

Table 3: Calibration

parameter value description

γ 0.5 Habit Persistence
β 0.99 Discount factor
σ 1 Utility Curvature: Consumption
κ 2.65 Utility Curvature: Leisure

υ 0.60 Calvo: (1− υ)% adjust prices each period
η 9 Price Elasticity of Demand
π̄ 1 Inflation Target
φπ 2.21 Taylor Rule inflation coefficient
φy 0.07 Taylor Rule output gap coefficient
φR 0.82 Interest Rate Smoothing
ρa 0.80 Prod. shock persistence
σa 0.019 Prod. shock std.
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8.5 Accuracy of Numerical Solution

I check the accuracy of the numerical solution by computing the errors of the residual equa-

tions. Specifically, I proceed as follows. First, I simulate the model forward for 10,000

periods. This gives a simulation for both the state and control variables of the model for

10,000 periods. Second, compute the residuals from the intertemporal equations 27, 33, 34

for the 10,000 periods. I report the decimal log of the absolute value of these residual errors.

On average, residual equation errors are on order of -3.53 for equation 27, -4.94 for

equation 33, and -2.58 for equation 34. These numbers are comparable to those established

by other studies whose models have similar degrees of complexity.
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Figure 8: Residual equation errors

(a) Equation 27 (b) Equation 33

(c) Equation 34

Notes: The histograms report the residual equation errors in decimal log basis. The dotted red lines mark
the mean residual equation errors.

33



8.6 Threshold VAR Estimation

To estimate Equation 9, I impose a natural conjugate prior on the VAR parameters by

adding the following dummy observation as suggested by Sims and Zha (1998) and Bańbura,

Giannone, and Reichlin (2010):

YD,1 =



diag(γ1σ1, . . . γKσK)/τ

0K×(P−1)×K

· · · · · · · · · · · ·
diag(σ1, . . . , σK)

· · · · · · · · · · · ·
01×K


, and XD,1 =


Jp ⊗ diag(σ1, . . . , σK)/τ 0NP×1

· · · · · · · · · · · ·
0K×KP 0K×1

· · · · · · · · · · · ·
01×KP c

 (36)

where γ1 to γK denotes the prior mean for the coefficients on the first lag, τ controls the

tightness of the prior on the VAR coefficients, c controls the tightness of the prior on the

constant terms, and Jp = diag(1, 2, . . . , P ). Th prior means are set to the estimated AR(1)

regression coefficients, which is estimated for each endogenous variable. The standard devi-

ation of the error terms from these AR(1) regressions are used for the scaling factors σi. τ is

set to 100, and c is 1/10000, which essentially is equivalent to a flat prior on the constant. I

also introduce a prior on the sum of the lagged dependent variables by adding the following

dummy observations:

YD,2 =
diag(γ1, µ1, . . . γKµK)

λ
, and XD,2 =

(
(11×P )⊗diag(γ1µ1,...,γKµK)

λ
0K×1

)
(37)

where µi is the sample averages of the endogenous variables from the training sample.

As in Bańbura, Giannone, and Reichlin (2010), the tightness of this sum of coefficients prior

is set to λ = 10τ . Given the natural conjugate prior, the conditional posterior distributions

of the VAR parameters Γj = vec(cj,Γj,1; Γj,2; . . . ; Γj,P ) and Ωj for j = {0, 1} are given by:

G(Γj|Ωj) ∼ N(Γ∗j,Ωj ⊗ (X ∗′ X∗)−1) (38)
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G(Ωj|Γj) ∼ IW (S∗j, T∗j). for j = {0, 1} (39)

For j = {0, 1}, the posterior means are defined by Γ∗j = (X ∗′j X∗j)−1(X ∗′j Y∗j) and

S∗j = (Y ∗j −X ∗j Γ̃j)
′(Y ∗j −X ∗j Γ̃j), where Y∗j = [Yj; YD,1; YD2 ], X∗ = [Xj; XD,1; XD2 ]

and Γ̃j is the draw of the VAR coefficients Γj rearranged to be consistent with X∗j. T∗h is

the number of rows of Y∗j.

By drawing successively from these conditional posteriors, I use the Gibbs sampler to

simulate the posterior distribution of Γj and Ωj. I use 20,000 iterations with the last 5000

used to produce the forecast density given by:

G(Yt+h|Yt) =

∫
G(Yt+h|Yt,Γ)×G(Γ|Yt)dΓ (40)

where h = 1, 2, 3, 4 and Γ = {Γ1,Ω1,Γ0,Ω0, R∗, d}. To estimate d and R∗, I assume a flat

prior on d and restrict its maximum value to four. I assume a normal prior for R∗ ∼ N(R̃, ν̃),

where R̃ = 1/T
∑T

i=1Rt and ν̃ = 10. I employ the Gibbs sampler introduced in Chen and Lee

(1995) to simulate the posterior distribution of the unknown parameters. Given an initial

value for R∗ and d, the conditional posterior for the VAR parameters in the two regimes is

determined by equations 38 and 39. Given a draw for the VAR parameters and a value for

d, a random walk Metropolis Hastings step is used to sample R∗. We draw candidate value

of R∗new from R∗new = R ∗old +Ψ1/2ε, ε ∼ N(0, 1). The acceptance probability is given by

g(Yt|R∗new,Ψ)/g(Yt|R∗old,Ψ) where g(·) denotes the posterior density and Ψ represents all

other parameters in the model. Chen and Lee (1995) show that the conditional posterior for

d is a multinomial distribution with probability, L(Yt|d,Ψ)/
∑4

d=1 L(Yt|d,Ψ), where L(·) is

the likelihood function. The forecast density can be computed by iterating equations 9 and

10 forward using the Gibbs draws for Γ′s and Ω′s.

8.7 Examples of the RBF Generalized Impulse Responses

Examples of the generalized impulse responses are illustrated in Figure 9. For this illustra-

tion, I selected a sample of 300 consecutive periods from the simulated data and estimated

the VAR(4) and RBF(1).21 To draw impulse responses, I pick two random histories, ωt−1,

21VAR(4) denotes the VAR model with 4 lags, and RBF(1) means the RBF estimator with 1 lag.
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from the sample and ensure that one of the selected histories satisfies the criterion for the

normal state while the other satisfies the criterion for the zlb state. I then calculate the

impulse responses with the shock occurring at these two histories.

In Figure 9, the blue solid line shows the true impulse response under the normal state,

while the red solid line shows the true impulse response under the zlb state. In addition to

the true impulse responses, the left panels show the estimated responses from the RBF(1)

estimator under the normal state in the blue dotted line and under the zlb state in the red

dotted line. Shaded bands represent the 2.5th and 97.5th percentiles.22 The right panels

show the estimated impulse responses from the linear VAR(4) with 95 percent confidence

bands in black lines.

The top panels of Figure 9 show the responses of the inflation rate following a positive

productivity shock. The positive productivity shock is deflationary. The figure shows that

the initial impact of the shock is slightly larger in magnitude during the normal state, which

reduces the inflation rate by 0.7% on impact. The inflation rate under the normal state then

quickly returns to zero after three periods. The decline of the inflation rate is smaller under

the zlb. The inflation rate goes down by 0.42% on impact, and the response is slightly more

persistent under the zlb. The RBF(1) estimator appears to successfully capture the different

responses of the inflation rate under the two different states. Moreover, the confidence bands

are reasonably narrow even when they are compared to those of the linear VAR(4) model.

As expected, the linear VAR(4) only captures the response during the normal state.

The next panels in Figure 9 show the responses of the interest rate. When the positive

productivity shock creates a deflationary pressure in the economy, the central bank follows

the Taylor rule by lowering the nominal interest rate during the normal state. The response

of the interest rate is smaller during the zlb periods because the central bank is unable to

push down the interest rate any further.23 The left panel shows that the RBF(1) estimator

once again successfully capture the different interest rate responses under the two different

22The confidence bands are estimated by the residual-based block bootstrap method. When I conduct
the bootstrap, the centroids and scaling parameters are re-estimated by repeating the K-means cluster
method for 50 times with different initial values and by selecting the centroids that minimize the errors. My
baseline preference is block bootstrap method rather than the wild bootstrap because the residuals exhibit
auto-correlation. The results are almost identical when the wild bootstrap is employed.

23The nominal interest rates appears to go down in the figure, but the responses shown here are relative
to the counterfactual where the shock did not occur. Thus, the negative interest rates response during the
zlb state actually indicate that the interest rates would have increased from zero faster if the shock did not
arrive. (If the shock did not occur, interest rate rises from zero whereas if the shock occurs, the interest rate
stayed zero. The difference between the shock scenario and non-shock scenario is negative.)
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regimes. Furthermore, the RBF(1) estimator can distinguish in a statistically significant

manner the two different interest rate responses under the zlb state and normal state.

Finally, Figure 10 shows the responses of consumption. Due to the positive productivity

shock, the consumption goes up in both normal and zlb states. The consumption responses

peak during the third quarter, reaching 1.2% in the normal state and 1% in the zlb state.

The weak response during the zlb periods stems from the higher real interest rate, which is

caused by the absence of the central bank’s reaction to the deflationary pressure. As the real

interest rate goes up during the zlb periods, the consumption is discouraged. The RBF(1)

estimator seems to reasonably capture the different consumption dynamics that follow the

positive supply shock. In addition, the responses under the two regimes can be distinguished

in a statistically significant manner.
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Figure 9: Examples of Generalized Impulse Responses

Inflation: RBF(1) Inflation: VAR(4)

Interest Rate: RBF(1) Interest Rate: VAR(4)
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Figure 10: Examples of Generalized Impulse Responses

Consumption: RBF(1) Consumption: VAR(4)

Notes: Impulse response functions of the inflation rate, interest rate, and consumption (in percent) to a one

standard-deviation positive productivity shock. True structural impulse responses from the NK model in

the normal state (blue solid line) or the zlb state (red solid line). Estimation from a RBF(1) in the normal

state (blue dashed line) or the zlb state (red dashed line). Estimated impulse response from a VAR(4)

(black dashed line). Shaded bands denote the 2.5th and 97.5th percentiles estimated by the residual-based

block bootstrap method.
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8.8 Additional Figures

Figure 11: Federal funds rate

Notes: Federal funds rate between 1980 and 2016. Red shaded areas represent the periods of weak output

responses outside the recession dates.
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Figure 12: Responses of cumulative GDP

(a) Response after 1st quarter (b) Response after 2nd quarter

(c) Response after 5th quarter (d) Response after 9th quarter

Notes: Impulse response functions of the cumulative real GDP (in percent) to a one standard-deviation

positive TFP shock. Shaded bands denote the 68% confidence interval estimated by the residual-based

block bootstrap method.
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Figure 13: Responses of Expected Inflation

(a) Response after 1st quarter (b) Response after 2nd quarter

(c) Response after 5th quarter (d) Response after 9th quarter

Notes: Impulse response functions of the expected inflation (in percent) to a one standard-deviation positive

TFP shock. Dotted lines show the 68% confidence bands estimated by the residual-based block bootstrap

method.
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Figure 14: Responses of Fed Funds rate

(a) Response after 1st quarter (b) Response after 2nd quarter

(c) Response after 5th quarter (d) Response after 9th quarter

Notes: Impulse response functions of the fed funds rate (in percent) to a one standard-deviation positive

TFP shock. Dotted lines show the 68% confidence bands estimated by the residual-based block bootstrap

method.
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Figure 15: Responses of real interest rate

(a) Response after 1st quarter (b) Response after 2nd quarter

(c) Response after 5th quarter (d) Response after 9th quarter

Notes: Impulse response functions of real interest rate (in percent) to a one standard-deviation positive

TFP shock. Dotted lines show the 68% confidence bands estimated by the residual-based block bootstrap

method.
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Figure 16: Responses of cumulative Consumption

(a) Response after 1st quarter (b) Response after 2nd quarter

(c) Response after 5th quarter (d) Response after 9th quarter

Notes: Impulse response functions of consumption (in percent) to a one standard-deviation positive TFP

shock. Dotted lines show the 68% confidence bands estimated by the residual-based block bootstrap

method.
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Figure 17: Responses of Hours Worked

(a) Response after 1st quarter (b) Response after 2nd quarter

(c) Response after 5th quarter (d) Response after 9th quarter

Notes: Impulse response functions of hours worked (in percent) to a one standard-deviation positive TFP

shock. Dotted lines show the 68% confidence bands estimated by the residual-based block bootstrap

method.
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Figure 18: Responses of cumulative Investment

(a) Response after 1st quarter (b) Response after 2nd quarter

(c) Response after 5th quarter (d) Response after 9th quarter

Notes: Impulse response functions of investment (in percent) to a one standard-deviation positive TFP

shock. Dotted lines show the 68% confidence bands estimated by the residual-based block bootstrap

method.
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Xu, L., A. Krzyżak, and A. Yuille (1994). On radial basis function nets and kernel regression:

Statistical consistency, convergence rates, and receptive field size. Neural Networks 7 (4),

609–628.

Zhang, G. and M. Y. Hu (1998). Neural network forecasting of the british pound/us dollar

exchange rate. Omega 26 (4), 495–506.

Zhang, Y.-Q. and X. Wan (2007). Statistical fuzzy interval neural networks for currency

exchange rate time series prediction. Applied Soft Computing 7 (4), 1149–1156.

53


	Introduction
	Radial Basis Functions
	RBF Formulation
	Parameter Estimation Methods and Renormalization

	Literature Review
	Monte Carlo Simulation
	Model Description
	RBF estimator
	Linear VAR
	TAR

	Generalized Impulse Response
	Results: MSE Comparison

	Application to the US Data
	Data
	Generalized Impulse Responses
	Results

	Discussion
	Conclusion
	Appendix
	NK Model for Monte Carlo Simulation
	Households with Habit Persistence
	Final Good Producer
	Intermediate Goods Producers
	Monetary Authority
	Aggregate Conditions

	Equilibrium Conditions
	Numerical Solution of Nonlinear NK Model
	Calibration
	Accuracy of Numerical Solution
	Threshold VAR Estimation
	Examples of the RBF Generalized Impulse Responses
	Additional Figures


